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Abstract-Tumor segmentation from medical image data is a challenging task due to the high diversity in
appearance of tumor tissue among different cases. In this paper we propose a new level set based
deformable model to segment the tumor region. We use the gradient information as well as the regional
data analysis to deform the level set. At every iteration step of the deformation, we estimate new velocity
forces according to the identified tumor voxels statistical measures, and the healthy tissues infor mation.
This method provides a way to segment the objects even when there are weak edges and gaps. M or eover,
the deforming contour s expand or shrink as necessary so as not to miss the weak edges. Experiments are
carried out on real datasets with different tumor shapes, sizes, locations, and internal texture. Our results
indicate that the proposed method give promising results over high resolution medical data aswell as low
resolution images for the high satisfaction of the oncologist at the Cancer Treatment Unit at Jaffna
Teaching Hospital.
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[.  INTRODUCTION

Modern medical imaging devices, such as Magnesonance imaging (MRI) and computed tomogra
(CT) imaging play a crucial role in diagnosis, ®rg irradiation planning, medical research andafigation in
tumor treatment. In radiotherapy it is nssary to precisely define the tumor lesions foadiation to avoic
irradiating healthy tissue. Radiation oncologistd aany other medical experts spend a large anaiuithe in
segmenting tumor volume in medical images. The tHdsknage segmentatiois actually the partition of &
image into a number of nasverlapping regions, each with distinct properi

In the past two decades, Geometric deformable mpdellevel set based deformable models, has f
widespread application in many fields oedical image segmentation and has undergone imnugv&opmen
in terms of its theoretical insight, as well as ingkitself more flexible and adaptable. They wer@eipendentl
proposed by Casellesal. [1] and by Mallacet al. [2]. The level set basatkformable models can automatic:
handle topology changes in an image and allow faltipte simultaneous boundary estimations, and treyno
sensitive to initial starting.

In this paper, to segment the tumor data, we pexgpaslevel set based demable model with a new spe
function. Section Il illustrates the proposed spéenction in detail, and explains its role in theformatior
process, whereas section Il gives a brief acconrbhasics of the classic speed function. Our mettzodever
segment the tumors whose boundaries are not welheld

II. THE CLASSIC SPEEDFUNCTION

In their initial work, Casellest al. [1] and Malladeét al. [2] proposed methods to solve the shape recc
problem by using the level set methods. They ugegllge sensve speed function of the fol

F =k (Fy+Fg) (1)

where,F, is the advection term, independent of the geomeftrthe front, which controls the direction
movement of the moving front. The second tF; is the part that depends on the geomof the front, such as
its local curvature. This term keeps the movingfremooth and differentiable during propagation

The contour evolution is coupled with the imageadhtough a multiplicative stopping tek;, given as:

1

k= 1+7 (G (o)) + 1 (x )} ™ @
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where,V{G,(x,y) * I1(x,y)} denotes the gradient of the input imdge, y) after Gaussian smoothing with
standard deviatiom and mean 0, ana is a positive integer.

Tumor tissues :
(mean intensity = py)
- "

Healthy tissues:
(mean intensity = pg)
& A

Figure 1: A hypointense tumor located in brain

In homogeneous regions, the tel{iG, (x, y) * I(x,y)} will converge to zero, so that the effectigfon
F, + F; becomes negligible. If the boundary is well definat the boundaries the tei{G, (x, y) * I(x, y)}|
tends to infinity {.e., F — 0), which stops the evolving front at the desiredior and the final zero level set
¢ = 0 corresponds to the segmentation result.

While the strength of image gradient is a solidigatbr of object boundaries, if the object boundary
indistinct or has gaps, the traditional deformatmatour may leak out because the multiplicativentenly slows
down the curve near the boundary rather than cdsiplstopping the curve.

Moreover, with the traditional speed function, tmatours can only evolve in one direction, eitmevard or
outward. If the curve passes the boundary, itmatl be pulled back to recover the correct boundary.

[1l. AN IMPROVEDSTATISTICAL BASED SPEEDFUNCTION

Pure edge based methods offer accurate boundalzmtion, but need an extra propagation step taiob
completely closed region boundaries and usuallyhafohave sufficient global knowledge to perform thek
well. On the other hand, pure region based segmiemtmakes use of region statistics and can prodooe
semantically meaningful results, but typically su#f from poor localization of region boundaries. ileal
solution would perform global object segmentatioithwntegrated region and edge information so thath
region statistics and local edge responses cariiliEed. Researchers have also been trying to rategregion
and edge information in image segmentation [3][Hé[b

Wanget al. [5] proposed a framework of deformable contouthods based on constrained optimization.
They have integrated region and boundary informaitibo one framework. Specifically, their stratagyto add
the region information to the existing edge bassell set formulation. They used an additional stogpperm in
terms of average brightness value and regionatlatdndeviation. However, this method is still vubdge to
weak edges and gaps, and the resulting contour®itiey expand beyond the gaps or stops at ndisgions [7].

Since region information is more global and lessceptible to noise, it will make the approach mmtgust
and precise than the boundary based methods. shibicebased scheme is proposed in [6], in whicHehel set
speed function is designed using a global threshdtitivated by these ideas, we have developed aspesd
function with region information as well as the bdary based constraints.

A. A Satistical Model
A common statistical way of standardizing data oe scale so a comparison can take place is usifig a
score. A Z-score will describe how much a point deviafesn a mean or specification point. Every normal
random variabl& can be transformed into a Z-score via the follgnéguation:
7 = X-u 3)

(4

whereX is a normal random variablg,is the mean oK, ando is the standard deviation ®f Therefore, in
other way, the above equation (3) can be usedttrrdime a value for the random varialdor a given Z-score
value.

Now, we will devise a model to segment tiygointense tumors, in which the tumor tissues appear as darke
than the healthy tissues, as shown in Figure guéh cases, it can be safely stated that,

ur < Hy “4)
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where uy and uy denote the mean intsities of the tumorous and healthy tissues respgti For the
hyperintense tumor images, the tumor tissues appear as rekatimeéghter than the healthy tissues, we
consider the inverted image so that the tumor laeeames darker and the same 10od can be applie

(@) Se-1(ly,uy,01) (b) Set-Aly, 1z, 03)

Figure 2: Two sets of data from same image

Even though the above equation (4) is obviousgetimeight be some overlapping in the tumor and heg
voxels’ intensitydistributions, such as shown in the Figure 1. Toeeg it is difficult to segment a tumor |
simply using only the gradient based speed funs;

Our approach is to let the manually placed contémideform inside the tumor region towards the lataumy
We roughly estimate the tumonsaximum intensity levell; regularly using statistical measures. If therearg
points on the moving contour whose intensity isrlyeequal tol, such points are shifted slowly, while the ot
contour points can haymuch higher evolving speed. Once all the corpoints reached the tumor boundary,
process will be terminated.

We have formulated an equation to calculate theotigmaximum intensity level; in terms of the regioni
statistical information. Caider an image shown in Figure 2, in which therisily is gradually increasing fro
the center (as usual, assume that the white’s dities are higher than the black’s). lI; andl, be random
variables, ang.,, o; andy,, o, be the respective mean and standard deviationeofetfional intensities. The
for a fixed Zscore value, it can be written

I1—pq Ia—p2
o T e ()

Since the set-has less brighter pixels than thaiset-2, it is clear that the would be liss thamu,. Similarly,
it can also be stated that thyewould be less thag,. Therefore, from the equation (5), it is obvioustl; should
be less thaif,. Hence, in general it can be stated that, if htaur expanded towards brighter regioten the
corresponding will be increased [8

Now assume that the contour shown in Figure 2(ffixézl, and hence, the correspondu, anda, will be
remain unchanged. In this case, using the equéiprior variousZ values we will get a range | values. By
choosing an appropriat value, it will be able to get thl as equal to the maximum intensity value for
contour region [8]. This is the important concepthe proposed tumor segmentation mett

Let the maximum possible intensity valfor a tumor tissue bé., and take it as a random variable. Tt
from the equation (3), thie can be defined b

Iy = pr + Zroyp (6)
where,ur, o are represent the mean and the standard devidttbe tumor tissues respective

But the poblem is neither the exau; nora; of the entire tumor region will be available at thiial stage
of the deformation process. Therefore, we useu,; andoy; of the initial contour/s for the rough estimatiofn
the . This estimation is then used to calculate thedgenction, and the deformation of the zero lesatiwill
be carried out for one time step. New valuesu; ando; can now be restimated. This process can be d
repeatedly using the followingerative form of the equati (6):

It = pp + Zror ()
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wheren > 0, I} denotes the approximate maximum limit for tumdemsity for the identified tumor voxels
at then'" step, anch = 0 corresponds to the initial stage. Tif ands}* represent the mean and the standard

(a) Tumor in brain MRI (b) Unnecessary portions eoppedout  (c) Identifying non tumor region

Figure 3: A rough selection for initiating the semtation process

deviation of the tumor tissues respectively.

The appropriate selection 8§ is another major problem. A simple technique isdus [6] to overcome this
issue, and we have used it for our purpose. Torgita theZ} term, we will deduce another equation similar to
the equation (6) by considering the healthy tissoésimum intensitylevel I, :

Iy = g — Zpoy )

Where,uy andoy represent a rough estimations of the mean anstéimelard deviation of the healthy tissues
respectively. Based on the equation (4), we knatlth< I, Vn. But, at the end of the segmentation process,
bothI} andly should be identical. Moreover, according to tleistical concepts, we could takgasZ7. Then,
by considering the equations (7) and (8), we cauliye at

n n

Using this equation, the maximum intensity limitr filhe tumor region can be calculated as an iterativ
manner. For a rough estimation of thganda;,;, we have to have information about at least soeadtty voxels.
A simple technique has been devised in our systemotlect a set of healthy voxels, with minimal use
intervention. Once the MRI image is loaded, theaegther than a rectangular region which contétiestumor
voxels is cropped out to reduce the unnecessarnputational complexities. Then the user has to riyugh
distinguish between tumor and healthy tissues usmgevel threshold function, which is illustratbg Figure 3.
Using this information, a rough estimation gf anday,; will be determined only once, at the initial starfehe
segmentation process.

B. The Speed Function

A good speed function has to push the zero leveb se 0 faster at the homogeneous regions, has to maintain
the smoothness of the zero level get 0 while deforming, has to change the direction adletron whenever
needs, and has to stop the moving front at the demiss. We have defined a speed function to aclaéwbese
constrains [8], as

F=Fs-g((1~ek) (10)

where, ¢ is a constant, and theis the local curvature of the moving front. Themef is much like the
advection tern¥, used in the equation (1), but here, it determiheslirection of movement dynamically, as well
as controls the evolving speed based on the regiofioamation. We use the sanig from the equation (1) for
g(D), but them is chosen as 1. That is,
1

9UCY)) = TGl

The termF; has been devised based on the statistical modeh gn the equation (9), such that the speed
value for a point on the zero level set= 0 is assigned according to the intensity differebetween the
particular point and the estimated minimum intgn&r the tumor. If the difference is large, thée tparticular
point is most likely to be well inside the tumogi@n. Hence, it can move faster. There might beesboundary
voxels with very high intensities. For such casles,stopping terng (1) stops the front without any problem as
the gradient will be very large.

(11)
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Let I be the estimated nimum tumor intensity font" iteration, then thé of a particular poinp on the
contour(C is defined as:

F#(p) = (It = 1,)/1D"| (12)

(a)a slice of a brain FLAIR MRI (b) Identified tumor region (c) 3D view of the segmented tumor

Figure 4. An example of the tumor segmentation.
where,

max,..(IF—1),ifIF—1, >0
DnZ{ qu(T q) ﬂT P (13)

mingec(If —1,),iflf — 1, < 0
And the speed function, given in the equation (t8h be written in the iterative form,
F"=Fg- gD - k™) (14)

The definition ofFg ensures that its value will be always in the raoit[—1,1]. If the differencelr — I, > 0,
then it should be considered as a tumorous voxahckl, theFs will be positive and the front moves further w
a syeed proportional to the difference. Wtiy — I,, < 0, it is most likely a nortumor voxel, so the value of t|
F; will be negative and proportional to the differenaed hence the front tends to shrink. If the déffece is
small, then the point is nsbprobably at the boundary of the tumor, and foegethe evolution speed will slo
down.

At the sharp edges the differeriz — I,, will be large, but the gradient produce a much &mahlue olg (1)
and it will stop the moving front. On the or hand, at the blur boundaries, the gradient vatllme quite enoug
to stop the moving front. But the differeriz — I, will be very low, and hence, the moving front temaisnove
very slowly. For such situations, if the estimatedue of/; remain more or less stable for a period of time
corresponding point can be permanently mountekiaatidcatior

The constant should be chosen carefully, so that (1 — k™) will never be a negative value, and henc
will not change the dition of evolution. Even if the moving front passim edge, the sign of ttFs will
automatically change to negative and the front stékt to shrink to get back to the et

V. EXPERIMENTAL RESULTS ANDANALYSIS

An experiment had been conducted on en image data obtained from the two main hospftalsancel
treatment in the Northern Province of Sri Lankdfn&aTeaching Hospital, and Base Hospital Thelllppalhe
test images, applicable to the system of the steoiytain data of tumors of dirent shapes, sizes, and intensi
from two famous modalities, namely MRI and (

An example of the segmentéamor produced by our method is shown in Fi%i@igljre 4(a) shows a slit
of a brain FLAIR MRI of dimension216 x 256 x 176 with a resolution of 1mfso-voxels. The tumor wa
spread in both side of the brain, and it appearsoagparably high intensil The tumor region is successfully
segmented by our proposed method, wlis shown in Figure 4(b) and Figure 4(c).

To evaluate the success of a jgatar segmentation approach, it is common to hsesegmentations obtain
manually by experts aground truth data. The results of our method were compared to madekheation by
medical physicists, who are responsible for thec8rnireatment Unit the Base Hospital Thellippalai a
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Jaffna Teaching Hospital. To minimize the inter-etpvariability, the weighted averages of the mé#igua
segmented results obtained by experts have bedrasgground truths.

In this study, four most suitable metrics have besed to compare the results obtained by our seigtiwam

TABLE I: COMPARISON OF GROUND TRUTH DATA AND THE OUTPUTS PRODUCERY THE SYSTEM

GT SM HD
Image # (mm3) | (mm3) n U Nn/U% | HMD | FNR | FPR | FNR-FPR (mm)
Image01 92746 93164 92328 93587 98,6 0.014 Q.46 1 D.9 -0.45 -0.45
Image02| 109705 11049 109267 110936 985 0.p15 0.4012 -0.72 6.540
Image03 11740 11953 11740 11953 982 0.018 0.00 1 1.8 -1.81 6.000
Image04| 56550 57732 56550 57732 98,0 0.020 Q.00 9 .0 -2.09 10.392
Image05 76013 76184 75927 76270 99,6 0.004 Q.11 4 0.3 -0.22 6.077
Image06 16756 16874 1663y 16993 979 0.021 0711 1.4 -0.70 4,141
Image07 3486 3487 3486 348] 100J0 0.J00 0,00 .03 0.03- 0.938
Image08 3817 3804 3800 3821 99.5 0.005 045 0.10 34 0. 1.781
Image09 75393 77364 75392 77365 974 0.026 0.00 2 2.6 -2.61 7.483
Image10 15481 15319 15319 15481 99,0 0.010 1.05 0 0.0 1.05 2.000
Imagell 24529 25343 24424 25448 960 0.040 0.43 5 B.7 -3.32 4.472
Imagel2 97948 99708 97947 99709 982 0.018 0.00 0 1.8 -1.80 10.198
Imagel3| 39634 40244 39346 40532 971 0.029 0.73 7 .2 -1.54 10.770
Imagel4 8911 9000 8901 901( 98.8 0.012 0j11 1.11 .00-1 2.828
Imagel5 8381 8546 8381 8544 98.1 0.019 0j00 197 .97-1 4.000
0.045
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Figure 5: Comparison chart for ground truth andahgputs produced by the system

method (say SM) and the ground truth (say GT), Wwhie given below:

The Hammoude distance measures dissimilarity betwets of samples. It can be calculated by

Hammoude Distance (HMD)
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#((SMUGT)N(SMNGT))
#(SMUGT)

HMD(SM, GT) =

wheret denotes the number of voxels.

The HMD will be one if the two sets are disjoing, they have no common members, and is zero if they a
identical.

» False Negative Rate (FNR)

The false negative rate (FNR) measures the rgpixefs classified as lesion by the medical exgeat tvere
not classified as lesion by the segmentation method

The measure of FNR is defined as follows

#(SMNGT)

FNR(SM,GT) = =570

» False Positive Rate (FPR)

The false positive rate (FPR) metric measures #be of pixels classified as lesion by the segmmtat
method that were not classified as lesion by thdicaéexpert.

The FPR is defined as follows

#(SMNGT)

FPR(SM,GT) = 505

» Hausdorff Distance

The Hausdorff distance measures how far two sulifedsmetric space are from each other, and wtsch i
defined as,

HD(SM, GT) = max(h(SM, GT), h(GT,SM))
where,
h(P,Q) = max rglelgllp —qll

In Table I, the column ‘GT’ denotes the volume loé tground truth data and the column ‘SM’ denotes th
volume of the corresponding segmentations obtdiyetie developed method.

Plots of Hammoude distances, Hausdorff distanaes,tlke FNR — FPR against the volume of the ground
truth data are shown in Figure 5.The graph of Hamdeodistance against volume shows that the volicnetr
overlap error is being below 0.03, except only ms¢ance. In other words, 97% or above volumetié@tam were
obtained except a single case. Another importaimtman be noted that the trend line in Hammoudadce
against volume graph stretches out almost in thizdmtal direction. This aspect guarantees thattiwiracy of
the segmentation method will remain stable evetafge tumor volumes.

In the Hammoude distance against volume graphpmidesémum error value corresponds to Imagell. But the
same Imagell has very IdWWR — FPR value, which can be observed in th¥R — FPR against the volume
graph. Hence, the possible reason for the highenrhtzude distance for this image would be that outhotke
might have identified more voxels than the manuaigmented result as tumorous lesions. Clinicillig far
better than missing tumor lesions. If we look a traph of Hausdorff distances against the voluonetife
Imagell, it has a quite lower valuee( 4.472) than the average of 5.685. This meansthieatero level set did
not go beyond 4.472 mm from the ground truth dana, the excess voxels might have been collectédntitis
distance.

One of the peek error valudse(, 10.392 mm) corresponds to Image04 in the Hausdstfances against the
volume graph. But it has one of the lowest valuethe graph oF NR — FPR against the volume, and it has a
very good matching percentage of 98% in the Hammoadidtance against volume graph. Hence, it can be
guessed that the zero level set might have gorg®20nm away from the ground truth data along a linédmch
of voxels, while rest of the tumor volume were itifged accurately.

If we consider th&"NR — FPR against the volume plot, most of the section efdghaph lies far below the x-
axis. This means that our method’s false negattedtion rate is much less than the false positatection rate.
As mentioned before, a bit higher false positivte kes no harm in clinical point of view than fafemgative rate.

If we look at theFNR at the table, for four cases among fifteen tesiges, our method did not miss even a single
tumor voxel. In more than 50% of the test images false negative rate is very close to 0.1 or. less

As an overall view, our system has a very good melwic matching percentage with very low false niega
rate, and has an acceptable range of Hausdoréindisterror rate. The presented experimental resulfgteen
different data sets show that our method produslésbie results.
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Moreover, it is worth mentioning the time factottlais juncture. Among the fifteen test images, rtieximum
time taken for producing the output has been fotmdébe not more than three minutes, whereas the ahanu
segmentation for the image that needed the maxitime for the system, took well around three hoiliftse
personnel from the Cancer Treatment Unit at theeBéagspital Thellippalai and Jaffna Teaching Hospra
impressed by this factor too.

V. CONCLUSION

A new level set based deformable model for tumgmemntation has been presented. In the past twaldsca
Geometric deformable models have been found widaspmapplication in many fields of medical image
segmentation.

The classical edge-based level set methods auitet! to tumor segmentation as they are not digcative
enough when the appearance of tumor and normaletisserlap. On the other hand, pure region-based
segmentation makes use of region statistics anghiatuce more semantically meaningful results,tjyitally
suffers from poor localization of region boundari&herefore, in the proposed work, the regionafistieal
measures are integrated into the gradient basedl $pection so that the deforming contour would mégs even
the blurred boundaries. The gradient term in theedpfunction is responsible to stop the moving @ontat
strong edges. On the other hand, the regionakstati measures are used to identify weak and disaed
boundaries. The deforming contours handle the tapchl changes naturally and expand or shrink asssary,
and automatically identify the tumor voxels witlglhiprecision.

Quantitative analyses have been carried out bygufiiteen different data sets. The segmented datee w
compared with ground truth data, and the resulth@fexperiments show that the method producesbteliand
promising results. The developed system has beetkeld by the medical physicists who are respon§iiléhe
cancer treatment planning at the base hospitallippalai and Jaffna teaching hospital. They exprdsgreat
satisfaction of the results produced by the systaththeir appreciation give us more confidence dliatmethod
works with high accuracy for the use of the cartoestment unit, which would decrease the time feaweral
hours to a few minutes in segmenting the tumororegi
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